Econ 702 - Week 6

Professor: Charles Engel, TA: Junhyong Kim \& Saerang Song

1 Exercise

1.1 Uncertainty with Quadratic Utility

Assume that there is uncertainty about next period income, i.e. $Y_{t+1}=Y_{t+1}^{H}$ with probability 0.5 and $Y_{t+1}=Y_{t+1}^{L}$ with probability 0.5 and $Y_{t+1}^{L}<Y_{t+1}^{H}$. The household maximizes the following lifetime expected-utility

$$
U=u\left(C_{t}\right)+\beta\left(\frac{1}{2} U\left(C_{t+1}^{H}\right)+\frac{1}{2} U\left(C_{t+1}^{L}\right)\right) \quad \text { where } \quad u\left(C_{t}\right)=C_{t}-\frac{\theta}{2} C_{t}^{2}
$$

such that

$$
\begin{gathered}
C_{t}+S_{t}=Y_{t} \\
C_{t+1}^{H}=Y_{t+1}^{H}+\left(1+r_{t}\right) S_{t}, \quad C_{t+1}^{L}=Y_{t+1}^{L}+\left(1+r_{t}\right) S_{t} .
\end{gathered}
$$

1. Derive the Euler equation.
2. Assume $\beta=1$ and $r_{t}=0$. Solve for C_{t} as a function of $Y_{t}, Y_{t+1}^{H}, Y_{t+1}^{L}$.
3. Does the household engage in precautionary saving? If not, why?

1.2 Log utility with Borrowing Constraint

Let's assume the household maximizes a lifetime utility function

$$
U=\ln \left(C_{t}\right)+\beta \ln \left(C_{t+1}\right)
$$

such that

$$
C_{t}+\frac{C_{t+1}}{1+r_{t}}=Y_{t}+\frac{Y_{t+1}}{1+r_{t}} .
$$

1. Derive the Euler equation.
2. Assume $\beta=1$ and $r_{t}=0$. Solve C_{t} as a function of Y_{t}, Y_{t+1}. What's the effect of increase in Y_{t} on the current consumption C_{t} ?

Keep assuming $\beta=1$ and $r_{t}=0$. And suppose that the household faces borrowing constraint

$$
C_{t} \leq Y_{t},
$$

and the first period income is less than the second period income

$$
Y_{t}<Y_{t+1} .
$$

3. Show that the borrowing constraint binds. What is the optimal consumption C_{t} in this case?
4. Suppose there is an increase in Y_{t} (but still Y_{t} is less than Y_{t+1}). What's the effect of increase in Y_{t} on the current consumption C_{t} ?
